Polynomial Computability of Fields of Algebraic Numbers
- Авторы: Alaev P.E.1,2, Selivanov V.L.3,4
-
Учреждения:
- Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Ershov Institute of Informatics System of the Siberian Branch of the Russian Academy of Sciences
- Kazan Federal University
- Выпуск: Том 98, № 1 (2018)
- Страницы: 341-343
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225529
- DOI: https://doi.org/10.1134/S1064562418050137
- ID: 225529
Цитировать
Аннотация
We prove that the field of complex algebraic numbers and the ordered field of real algebraic numbers have isomorphic presentations computable in polynomial time. For these presentations, new algorithms are found for evaluation of polynomials and solving equations of one unknown. It is proved that all best known presentations for these fields produce polynomially computable structures or quotient-structures such that there exists an isomorphism between them polynomially computable in both directions.
Об авторах
P. Alaev
Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Автор, ответственный за переписку.
Email: alaev@math.nsc.ru
Россия, Novosibirsk, 630090; Novosibirsk, 630090
V. Selivanov
Ershov Institute of Informatics System of the Siberian Branch of the Russian Academy of Sciences; Kazan Federal University
Email: alaev@math.nsc.ru
Россия, Novosibirsk; Kazan, Republic of Tatarstan, 420008
Дополнительные файлы
