Partial Decomposition of a Domain Containing Thin Tubes for Solving the Heat Equation
- 作者: Amosov A.A.1, Panasenko G.P.2
-
隶属关系:
- National Research University “Moscow Power Engineering Institute,”
- Institute Camille Jordan UMR CNRS 5208 University of Lyon
- 期: 卷 97, 编号 1 (2018)
- 页面: 69-72
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225460
- DOI: https://doi.org/10.1134/S1064562418010222
- ID: 225460
如何引用文章
详细
An initial–boundary value problem for the heat equation in a three-dimensional domain containing thin cylindrical tubes is considered. The Neumann condition is set on the lateral boundaries of the tubes. The original three-dimensional problem is reduced to a hybrid-dimensional one in which the heat equation in the tubes is replaced by the one-dimensional heat equation in shorter cylinders (subtubes), and the three- and one-dimensional equations are matched on the bases of the subtubes. The difference between the solutions of the original and hybrid-dimensional problems is estimated using two geometric characteristics: the distance between the bases of the tubes and subtubes and the reciprocals of the minimal positive eigenvalues of the Neumann problem for the Laplace operator in the tube cross sections.
作者简介
A. Amosov
National Research University “Moscow Power Engineering Institute,”
编辑信件的主要联系方式.
Email: amosovaa@mpei.ru
俄罗斯联邦, Moscow, 111250
G. Panasenko
Institute Camille Jordan UMR CNRS 5208 University of Lyon
Email: amosovaa@mpei.ru
法国, Saint-Etienne, 42023
补充文件
