Fischer decomposition of the space of entire functions for the convolution operator
- Авторы: Napalkov V.V.1,2, Mullabaeva A.U.1
-
Учреждения:
- Institute of Mathematics and Computer Center, Ufa Scientific Center
- Bashkir State University, Bashkortostan, Russia
- Выпуск: Том 96, № 2 (2017)
- Страницы: 465-467
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225375
- DOI: https://doi.org/10.1134/S1064562417050155
- ID: 225375
Цитировать
Аннотация
It is known that any function in a Hilbert Bargmann–Fock space can be represented as the sum of a solution of a given homogeneous differential equation with constant coefficients and a function being a multiple of the characteristic function of this equation with conjugate coefficients. In the paper, a decomposition of the space of entire functions of one complex variable with the topology of uniform convergence on compact sets for the convolution operator is presented. As a corollary, a solution of the de la Vallée Poussin interpolation problem for the convolution operator with interpolation points at the zeros of the characteristic function with conjugate coefficient is obtained.
Об авторах
V. Napalkov
Institute of Mathematics and Computer Center, Ufa Scientific Center; Bashkir State University, Bashkortostan, Russia
Автор, ответственный за переписку.
Email: napalkov@matem.anrb.ru
Россия, Ufa, Bashkortostan, 450077; Ufa, Bashkortostan, 450077
A. Mullabaeva
Institute of Mathematics and Computer Center, Ufa Scientific Center
Email: napalkov@matem.anrb.ru
Россия, Ufa, Bashkortostan, 450077
Дополнительные файлы
