Fischer decomposition of the space of entire functions for the convolution operator


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is known that any function in a Hilbert Bargmann–Fock space can be represented as the sum of a solution of a given homogeneous differential equation with constant coefficients and a function being a multiple of the characteristic function of this equation with conjugate coefficients. In the paper, a decomposition of the space of entire functions of one complex variable with the topology of uniform convergence on compact sets for the convolution operator is presented. As a corollary, a solution of the de la Vallée Poussin interpolation problem for the convolution operator with interpolation points at the zeros of the characteristic function with conjugate coefficient is obtained.

作者简介

V. Napalkov

Institute of Mathematics and Computer Center, Ufa Scientific Center; Bashkir State University, Bashkortostan, Russia

编辑信件的主要联系方式.
Email: napalkov@matem.anrb.ru
俄罗斯联邦, Ufa, Bashkortostan, 450077; Ufa, Bashkortostan, 450077

A. Mullabaeva

Institute of Mathematics and Computer Center, Ufa Scientific Center

Email: napalkov@matem.anrb.ru
俄罗斯联邦, Ufa, Bashkortostan, 450077

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017