Fischer decomposition of the space of entire functions for the convolution operator


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is known that any function in a Hilbert Bargmann–Fock space can be represented as the sum of a solution of a given homogeneous differential equation with constant coefficients and a function being a multiple of the characteristic function of this equation with conjugate coefficients. In the paper, a decomposition of the space of entire functions of one complex variable with the topology of uniform convergence on compact sets for the convolution operator is presented. As a corollary, a solution of the de la Vallée Poussin interpolation problem for the convolution operator with interpolation points at the zeros of the characteristic function with conjugate coefficient is obtained.

Sobre autores

V. Napalkov

Institute of Mathematics and Computer Center, Ufa Scientific Center; Bashkir State University, Bashkortostan, Russia

Autor responsável pela correspondência
Email: napalkov@matem.anrb.ru
Rússia, Ufa, Bashkortostan, 450077; Ufa, Bashkortostan, 450077

A. Mullabaeva

Institute of Mathematics and Computer Center, Ufa Scientific Center

Email: napalkov@matem.anrb.ru
Rússia, Ufa, Bashkortostan, 450077

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017