Fischer decomposition of the space of entire functions for the convolution operator


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

It is known that any function in a Hilbert Bargmann–Fock space can be represented as the sum of a solution of a given homogeneous differential equation with constant coefficients and a function being a multiple of the characteristic function of this equation with conjugate coefficients. In the paper, a decomposition of the space of entire functions of one complex variable with the topology of uniform convergence on compact sets for the convolution operator is presented. As a corollary, a solution of the de la Vallée Poussin interpolation problem for the convolution operator with interpolation points at the zeros of the characteristic function with conjugate coefficient is obtained.

Авторлар туралы

V. Napalkov

Institute of Mathematics and Computer Center, Ufa Scientific Center; Bashkir State University, Bashkortostan, Russia

Хат алмасуға жауапты Автор.
Email: napalkov@matem.anrb.ru
Ресей, Ufa, Bashkortostan, 450077; Ufa, Bashkortostan, 450077

A. Mullabaeva

Institute of Mathematics and Computer Center, Ufa Scientific Center

Email: napalkov@matem.anrb.ru
Ресей, Ufa, Bashkortostan, 450077

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017