On the Finiteness of Hyperelliptic Fields with Special Properties and Periodic Expansion of √f


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We prove the finiteness of the set of square-free polynomials fk[x] of odd degree distinct from 11 considered up to a natural equivalence relation for which the continued fraction expansion of the irrationality \(\sqrt {f\left( x \right)} \) in k((x)) is periodic and the corresponding hyperelliptic field k(x)(√f) contains an S-unit of degree 11. Moreover, it was proved for k = ℚ that there are no polynomials of odd degree distinct from 9 and 11 satisfying the conditions mentioned above.

Sobre autores

V. Platonov

Scientific Research Institute for System Analysis

Autor responsável pela correspondência
Email: platonov@niisi.ras.ru
Rússia, Moscow, 117218

V. Zhgoon

Scientific Research Institute for System Analysis

Email: platonov@niisi.ras.ru
Rússia, Moscow, 117218

M. Petrunin

Scientific Research Institute for System Analysis

Email: platonov@niisi.ras.ru
Rússia, Moscow, 117218

Yu. Shteinikov

Scientific Research Institute for System Analysis

Email: platonov@niisi.ras.ru
Rússia, Moscow, 117218

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018