Arithmetic Properties of Generalized Hypergeometric F-Series


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A generalization of the Siegel–Shidlovskii method in the theory of transcendental numbers is used to prove the infinite algebraic independence of elements (generated by generalized hypergeometric series) of direct products of fields \(\mathbb{K}_v\), which are completions of an algebraic number field \(\mathbb{K}\) of finite degree over the field of rational numbers with respect to valuations v of \(\mathbb{K}\) extending p-adic valuations of the field ℚ over all primes p, except for a finite number of them.

Sobre autores

V. Chirskii

Faculty of Mechanics and Mathematics

Autor responsável pela correspondência
Email: vgchirskii@yandex.ru
Rússia, Moscow, 119992

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018