General Embedding Theorem


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The quotient space of an arbitrary Banach space B by any subspace B1B equipped with the norm \(||b|B/{B_1}|| = \mathop {\inf }\limits_{f \in B/{B_1}} ||f|b||\) is considered. In the case where the infimum is a minimum, i.e., it is attained at some element, a formula for this element is presented. The proof is based on restating the original problem in dual spaces with the help of corresponding Legendre transforms. Although the original problem is nonlinear, it is found that its formulation in dual spaces is always linear and solvable. The results are applied to the general theory of boundary value problems for differential equations of mathematical physics.

Sobre autores

M. Ramazanov

Institute of Mathematics and Computing Center, Ufa Scientific Center

Autor responsável pela correspondência
Email: ramazanovmd@yandex.ru
Rússia, Ufa, Bashkortostan, 450000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018