General Embedding Theorem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The quotient space of an arbitrary Banach space B by any subspace B1B equipped with the norm \(||b|B/{B_1}|| = \mathop {\inf }\limits_{f \in B/{B_1}} ||f|b||\) is considered. In the case where the infimum is a minimum, i.e., it is attained at some element, a formula for this element is presented. The proof is based on restating the original problem in dual spaces with the help of corresponding Legendre transforms. Although the original problem is nonlinear, it is found that its formulation in dual spaces is always linear and solvable. The results are applied to the general theory of boundary value problems for differential equations of mathematical physics.

Авторлар туралы

M. Ramazanov

Institute of Mathematics and Computing Center, Ufa Scientific Center

Хат алмасуға жауапты Автор.
Email: ramazanovmd@yandex.ru
Ресей, Ufa, Bashkortostan, 450000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018