Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It turns out that the deviations of the Fejer sums for continuous 2π-periodic functions and the rates of convergence in the von Neumann ergodic theorem can both be calculated using, in fact, the same formulas (by integrating the Fejer kernels). As a result, for many dynamical systems popular in applications, the rates of convergence in the von Neumann ergodic theorem can be estimated with a sharp leading coefficient of the asymptotic by applying S.N. Bernstein’s more than hundred-year old results in harmonic analysis.

Sobre autores

A. Kachurovskii

Sobolev Institute of Mathematics, Siberian Branch

Autor responsável pela correspondência
Email: agk@math.nsc.ru
Rússia, Novosibirsk, 630090

K. Knizhov

Novosibirsk State University

Email: agk@math.nsc.ru
Rússia, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018