Local laws for non-Hermitian random matrices


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The product of mN independent random square matrices whose elements are independent identically distributed random variables with zero mean and unit variance is considered. It is known that, as the size of the matrices increases to infinity, the empirical spectral measure of the normalized eigenvalues of the product converges with probability 1 to the distribution of the mth power of the random variable uniformly distributed on the unit disk of the complex plane. In particular, in the case of m = 1, the circular law holds. The purpose of this paper is to prove the validity of the local circular law (as well as its generalization to the case of any fixed m) in the case where the distribution of the matrix elements has finite absolute moment of order 4 + δ,δ > 0,. Recent results of Bourgade, Yau, and Yin, of Tao and Vu, and of Nemish are generalized.

Sobre autores

F. Götze

Bielefeld University

Email: a.naumov@skoltech.ru
Alemanha, Bielefeld, 33501

A. Naumov

Skolkovo Institute of Science and Technology; Institute for Information Transmission Problems

Autor responsável pela correspondência
Email: a.naumov@skoltech.ru
Rússia, Skolkovo, Moscow oblast, 143025; Moscow, 127994

A. Tikhomirov

Komi Scientific Center, Ural Branch

Email: a.naumov@skoltech.ru
Rússia, Syktyvkar, 167982

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017