Estimate of the spectrum deviation of the singularly perturbed Steklov problem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A Steklov-type problem with rapidly alternating Dirichlet and Steklov boundary conditions in a bounded n-dimensional domain in considered. The regions on which the Steklov condition is given have diameter of order ε, and the distance between them is larger than or equal to 2ε. It is proved that, as the small parameter tends to zero, the eigenvalues of this problem degenerate, i.e., tend to infinity. It is also proved that the rate of increase to infinity is larger than or equal to |ln ε|δ, δ ∈ (0;2 − 2/n) as ε, tends to zero.

作者简介

A. Chechkina

Mechanics and Mathematics Faculty

编辑信件的主要联系方式.
Email: chechkina@gmail.com
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017