The Banach method and the monotone mapping method for finding optimal controls in reflexive (B)-spaces
- Авторлар: Prilepko A.I.1
-
Мекемелер:
- Faculty of Mechanics and Mathematics
- Шығарылым: Том 96, № 2 (2017)
- Беттер: 477-479
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225385
- DOI: https://doi.org/10.1134/S1064562417050210
- ID: 225385
Дәйексөз келтіру
Аннотация
Control and observation problems for operator equations of the first kind in reflexive strictly convex Banach spaces are considered. A BUME (Banach uniqueness and existence) method and a method of monotone nonlinear mappings for finding optimal (i.e., norm-minimal) controls are proposed, and an abstract maximum principle is stated. Under the additional assumption of separability and smoothness on (B)-spaces, an optimal control is found by the Galerkin method. As applications, ODE systems and partial differential equations are considered.
Авторлар туралы
A. Prilepko
Faculty of Mechanics and Mathematics
Хат алмасуға жауапты Автор.
Email: prilepko.ai@yandex.ru
Ресей, Moscow, 11999
Қосымша файлдар
