Bitsadze–Samarskii problem for a parabolic system on the plane


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The solvability (in classical sense) of the Bitsadze–Samarskii nonlocal initial–boundary value problem for a one-dimensional (in x) second-order parabolic system in a semibounded domain with a nonsmooth lateral boundary is proved by applying the method of boundary integral equations. The only condition imposed on the right-hand side of the nonlocal boundary condition is that it has a continuous derivative of order 1/2 vanishing at t = 0. The smoothness of the solution is studied.

作者简介

E. Baderko

Faculty of Mechanics and Mathematics

编辑信件的主要联系方式.
Email: baderko.ea@yandex.ru
俄罗斯联邦, Moscow, 119992

M. Cherepova

National Research University “Moscow Power Engineering Institute” (MPEI)

Email: baderko.ea@yandex.ru
俄罗斯联邦, Moscow, 111250

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016