On Geary’s theorem for the field of p-adic numbers
- Autores: Myronyuk M.V.1, Feldman G.M.1
-
Afiliações:
- Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
- Edição: Volume 93, Nº 2 (2016)
- Páginas: 152-154
- Seção: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223466
- DOI: https://doi.org/10.1134/S1064562416020095
- ID: 223466
Citar
Resumo
Let ℚp, where p > 2, be a field of p-adic numbers. We consider two independent identically distributed random variables with values in ℚp and distribution μ with a continuous density. We prove that the sum and the squared difference of these random variables are independent if and only if μ is an idempotent distribution, i.e., a shift of the Haar distribution of a compact subgroup of the additive group of the field ℚp.
Palavras-chave
Sobre autores
M. Myronyuk
Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
Autor responsável pela correspondência
Email: myronyuk@ilt.kharkov.ua
Ucrânia, 47, Nauky ave, Kharkiv, 61103
G. Feldman
Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
Email: myronyuk@ilt.kharkov.ua
Ucrânia, 47, Nauky ave, Kharkiv, 61103
Arquivos suplementares
