Foundations of Quasiconformal Analysis of a Two-Index Scale of Spatial Mappings
- Авторлар: Vodopyanov S.K.1,2
-
Мекемелер:
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Шығарылым: Том 99, № 1 (2019)
- Беттер: 23-27
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225613
- DOI: https://doi.org/10.1134/S1064562419010095
- ID: 225613
Дәйексөз келтіру
Аннотация
A scale of mappings that depends on two real parameters \(p,q\) (\(n - 1 \leqslant q \leqslant p < \infty \)) and a weight function \(\theta \) is defined. In the case \(q = p = n,\)\(\theta \equiv 1,\) well-known mappings with bounded distortion are obtained. The mappings of a two-index scale inherit many properties of mappings with bounded distortion. They are used to solve several problems in global analysis and applied problems.
Авторлар туралы
S. Vodopyanov
Sobolev Institute of Mathematics, Siberian Branch,Russian Academy of Sciences; Novosibirsk State University
Хат алмасуға жауапты Автор.
Email: vodopis@math.nsc.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090
Қосымша файлдар
