Everywhere Differentiable Functions without Monotonicity Intervals and Transcendental Numbers
- Авторлар: Agadzhanov A.N.1
-
Мекемелер:
- Trapeznikov Institute of Control Sciences
- Шығарылым: Том 97, № 3 (2018)
- Беттер: 219-222
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225498
- DOI: https://doi.org/10.1134/S1064562418030067
- ID: 225498
Дәйексөз келтіру
Аннотация
The class of everywhere differentiable functions without monotonicity intervals is considered in terms of number theory. A number-theoretic representation of the set of points of the unit interval is constructed using the classification of transcendental numbers proposed by K. Mahler, and a theorem on sufficient conditions for differentiable functions to belong to this class is stated. Results concerning the behavior of derivatives of functions from this class are presented. A mixed problem for the heat equation modeling heat transfer in a distributed system is considered. It is shown that the control function for this system can be everywhere differentiable but having no monotonicity intervals.
Авторлар туралы
A. Agadzhanov
Trapeznikov Institute of Control Sciences
Хат алмасуға жауапты Автор.
Email: ashot_ran@mail.ru
Ресей, Moscow, 117997
Қосымша файлдар
