Large deviations and rates of convergence in the Birkhoff ergodic theorem: From Hölder continuity to continuity
- Авторлар: Kachurovskii A.G.1,2, Podvigin I.V.1,2
-
Мекемелер:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- Шығарылым: Том 93, № 1 (2016)
- Беттер: 6-8
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223343
- DOI: https://doi.org/10.1134/S106456241601004X
- ID: 223343
Дәйексөз келтіру
Аннотация
It is established that, for ergodic dynamical systems, upper estimates for the decay of large deviations of ergodic averages for (non-Hölder) continuous almost everywhere averaged functions have the same asymptotics as in the Hölder continuous case. The results are applied to obtaining the corresponding estimates for large deviations and rates of convergence in the Birkhoff ergodic theorem with non-Hölder averaged functions in certain popular chaotic billiards, such as the Bunimovich stadiums and the planar periodic Lorentz gas.
Авторлар туралы
A. Kachurovskii
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: ipodvigin@math.nsc.ru
Ресей, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
I. Podvigin
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Хат алмасуға жауапты Автор.
Email: ipodvigin@math.nsc.ru
Ресей, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
Қосымша файлдар
