Local Metric Properties of Level Surfaces on Carnot–Carathéodory Spaces
- Authors: Karmanova M.B.1
-
Affiliations:
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 99, No 1 (2019)
- Pages: 75-78
- Section: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225626
- DOI: https://doi.org/10.1134/S1064562419010241
- ID: 225626
Cite item
Abstract
An adequate local metric characteristic is introduced for level sets of \(C_{H}^{1}\)-mappings of Carnot manifolds to Carnot–Carathéodory spaces. Moreover, for mappings defined on Carnot groups, a special adapted basis in the preimage is constructed that assigns a suitable local sub-Riemannian structure on the complement of the kernel of a sub-Riemannian differential to the initial sub-Riemannian structure in the image.
About the authors
M. B. Karmanova
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: maryka@math.nsc.ru
Russian Federation, Novosibirsk, 630090
Supplementary files
