On the periodicity of continued fractions in hyperelliptic fields
- 作者: Platonov V.P.1, Fedorov G.V.1
-
隶属关系:
- Scientific Research Institute of System Analysis
- 期: 卷 95, 编号 3 (2017)
- 页面: 254-258
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225094
- DOI: https://doi.org/10.1134/S106456241703019X
- ID: 225094
如何引用文章
详细
On the basis of a given criterion for the quasi-periodicity of continued fractions for elements of the hyperelliptic field L = K(x)(\(\sqrt f \)), where K is an arbitrary field of characteristic different from 2 and f ∈ K[x] is a square-free polynomial, new polynomials f ∈ Q[x] of odd degree for which the elements of \(\sqrt f \) have periodic continued fraction expansion are found.
作者简介
V. Platonov
Scientific Research Institute of System Analysis
编辑信件的主要联系方式.
Email: platonov@niisi.ras.ru
俄罗斯联邦, Moscow, 117218
G. Fedorov
Scientific Research Institute of System Analysis
Email: platonov@niisi.ras.ru
俄罗斯联邦, Moscow, 117218
补充文件
