Accelerated Primal-Dual Gradient Descent with Linesearch for Convex, Nonconvex, and Nonsmooth Optimization Problems
- 作者: Guminov S.V.1, Nesterov Y.E.2,3, Dvurechensky P.E.4, Gasnikov A.V.1,4
 - 
							隶属关系: 
							
- Moscow Institute of Physics and Technology
 - Center for Operations Research and Econometrics (CORE), Catholic University of Louvain
 - National Research University Higher School of Economics
 - Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
 
 - 期: 卷 99, 编号 2 (2019)
 - 页面: 125-128
 - 栏目: Mathematics
 - URL: https://journals.rcsi.science/1064-5624/article/view/225638
 - DOI: https://doi.org/10.1134/S1064562419020042
 - ID: 225638
 
如何引用文章
详细
A new version of accelerated gradient descent is proposed. The method does not require any a priori information on the objective function, uses a linesearch procedure for convergence acceleration in practice, converge according to well-known lower bounds for both convex and nonconvex objective functions, and has primal-dual properties. A universal version of this method is also described.
作者简介
S. Guminov
Moscow Institute of Physics and Technology
							编辑信件的主要联系方式.
							Email: sergey.guminov@phystech.edu
				                					                																			                												                	俄罗斯联邦, 							Dolgoprudnyi, Moscow oblast, 141700						
Yu. Nesterov
Center for Operations Research and Econometrics (CORE), Catholic University of Louvain; National Research University Higher School of Economics
														Email: sergey.guminov@phystech.edu
				                					                																			                												                	比利时, 							Louvain-la-Neuve; Moscow, 101000						
P. Dvurechensky
Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
														Email: sergey.guminov@phystech.edu
				                					                																			                												                	俄罗斯联邦, 							Moscow, 127051						
A. Gasnikov
Moscow Institute of Physics and Technology; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
														Email: sergey.guminov@phystech.edu
				                					                																			                												                	俄罗斯联邦, 							Dolgoprudnyi, Moscow oblast, 141700; Moscow, 127051						
补充文件
				
			
						
						
					
						
						
				