Soft Randomized Machine Learning


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new method for entropy-randomized machine learning is proposed based on empirical risk minimization instead of the exact fulfillment of empirical balance conditions. The corresponding machine learning algorithm is shown to generate a family of exponential distributions, and their structure is found.

作者简介

Yu. Popkov

Institute for Systems Analysis, Federal Research Center “Computer Science and Control,”; Haifa University; Yugorsk Research Institute of Information Technologies

编辑信件的主要联系方式.
Email: popkov@isa.ru
俄罗斯联邦, Moscow, 117312; Karmiel; Khanty-Mansiysk, Tyumen oblast

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018