On Sobolev Classes Containing Solutions to Fokker–Planck–Kolmogorov Equations
- Авторы: Bogachev V.I.1,2,3, Popova S.N.1, Shaposhnikov S.V.1,2,3
-
Учреждения:
- Department of Mechanics and Mathematics
- National Research University Higher School of Economics
- St.-Tikhon’s Orthodox University
- Выпуск: Том 98, № 2 (2018)
- Страницы: 498-501
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225566
- DOI: https://doi.org/10.1134/S1064562418060273
- ID: 225566
Цитировать
Аннотация
The main result of this paper answers negatively a long-standing question and shows that a density of a probability measure satisfying the Fokker–Planck–Kolmogorov equation with a drift integrable with respect to this density can fail to belong to the Sobolev class W1,1(ℝd). There is also a version of this result for densities with respect to Gaussian measures. On the other hand, we prove that the solution density belongs to certain fractional Sobolev classes.
Об авторах
V. Bogachev
Department of Mechanics and Mathematics; National Research University Higher School of Economics; St.-Tikhon’s Orthodox University
Автор, ответственный за переписку.
Email: vibogach@mail.ru
Россия, Moscow, 119991; Moscow; Moscow
S. Popova
Department of Mechanics and Mathematics
Email: vibogach@mail.ru
Россия, Moscow, 119991
S. Shaposhnikov
Department of Mechanics and Mathematics; National Research University Higher School of Economics; St.-Tikhon’s Orthodox University
Email: vibogach@mail.ru
Россия, Moscow, 119991; Moscow; Moscow
Дополнительные файлы
