Fejér Sums and Fourier Coefficients of Periodic Measures


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Fejér sums of periodic measures and the norms of the deviations from the limit in the von Neumann ergodic theorem are calculating in terms of corresponding Fourier coefficients, in fact, using the same formulas. As a result, well-known estimates for the rates of convergence in the von Neumann ergodic theorem can be restated as estimates for the Fejér sums at a point for periodic measures. In this way, natural sufficient conditions for the polynomial growth and polynomial decay of these sums can be obtained in terms of Fourier coefficients. Besides, for example, it is shown that every continuous 2π-periodic function is uniquely determined by its sequence of Fejér sums at any two points whose difference is incommensurable with π.

作者简介

A. Kachurovskii

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

编辑信件的主要联系方式.
Email: agk@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

I. Podvigin

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: agk@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018