On the Stability of a Periodic Hamiltonian System with One Degree of Freedom in a Transcendental Case


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The stability of an equilibrium of a nonautonomous Hamiltonian system with one degree of freedom whose Hamiltonian function depends 2π-periodically on time and is analytic near the equilibrium is considered. The multipliers of the system linearized around the equilibrium are assumed to be multiple and equal to 1 or–1. Sufficient conditions are found under which a transcendental case occurs, i.e., stability cannot be determined by analyzing the finite-power terms in the series expansion of the Hamiltonian about the equilibrium. The equilibrium is proved to be unstable in the transcendental case.

Авторлар туралы

B. Bardin

Moscow Aviation Institute (National Research University); Mechanical Engineering Research Institute

Хат алмасуға жауапты Автор.
Email: bsbardin@yandex.ru
Ресей, Moscow, 125993; Moscow, 101990

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018