On the Stability of a Periodic Hamiltonian System with One Degree of Freedom in a Transcendental Case
- Авторлар: Bardin B.S.1,2
-
Мекемелер:
- Moscow Aviation Institute (National Research University)
- Mechanical Engineering Research Institute
- Шығарылым: Том 97, № 2 (2018)
- Беттер: 161-163
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225482
- DOI: https://doi.org/10.1134/S1064562418020163
- ID: 225482
Дәйексөз келтіру
Аннотация
The stability of an equilibrium of a nonautonomous Hamiltonian system with one degree of freedom whose Hamiltonian function depends 2π-periodically on time and is analytic near the equilibrium is considered. The multipliers of the system linearized around the equilibrium are assumed to be multiple and equal to 1 or–1. Sufficient conditions are found under which a transcendental case occurs, i.e., stability cannot be determined by analyzing the finite-power terms in the series expansion of the Hamiltonian about the equilibrium. The equilibrium is proved to be unstable in the transcendental case.
Авторлар туралы
B. Bardin
Moscow Aviation Institute (National Research University); Mechanical Engineering Research Institute
Хат алмасуға жауапты Автор.
Email: bsbardin@yandex.ru
Ресей, Moscow, 125993; Moscow, 101990
Қосымша файлдар
