On the Mean Number of Particles of a Branching Random Walk on ℤd with Periodic Sources of Branching


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a continuous-time branching random walk on ℤd, where the particles are born and die on a periodic set of points (sources of branching). The spectral properties of the evolution operator for the mean number of particles at an arbitrary point of ℤd are studied. This operator is proved to have a positive spectrum, which leads to an exponential asymptotic behavior of the mean number of particles as t → ∞.

作者简介

M. Platonova

St. Petersburg State University

编辑信件的主要联系方式.
Email: mariyaplat@rambler.ru
俄罗斯联邦, St. Petersburg

K. Ryadovkin

St. Petersburg State University

Email: mariyaplat@rambler.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018