On the Mean Number of Particles of a Branching Random Walk on ℤd with Periodic Sources of Branching
- 作者: Platonova M.V.1, Ryadovkin K.S.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 97, 编号 2 (2018)
- 页面: 140-143
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225477
- DOI: https://doi.org/10.1134/S1064562418020102
- ID: 225477
如何引用文章
详细
We consider a continuous-time branching random walk on ℤd, where the particles are born and die on a periodic set of points (sources of branching). The spectral properties of the evolution operator for the mean number of particles at an arbitrary point of ℤd are studied. This operator is proved to have a positive spectrum, which leads to an exponential asymptotic behavior of the mean number of particles as t → ∞.
作者简介
M. Platonova
St. Petersburg State University
编辑信件的主要联系方式.
Email: mariyaplat@rambler.ru
俄罗斯联邦, St. Petersburg
K. Ryadovkin
St. Petersburg State University
Email: mariyaplat@rambler.ru
俄罗斯联邦, St. Petersburg
补充文件
