A sixth-order bicompact scheme with spectral-like resolution for hyperbolic equations


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For the numerical solution of nonstationary quasilinear hyperbolic equations, a family of symmetric semidiscrete bicompact schemes based on collocation polynomials is constructed in the one- and multidimensional cases. A dispersion analysis of a semidiscrete bicompact scheme of six-order accuracy in space is performed. It is proved that the dispersion properties of the scheme are preserved on highly nonuniform spatial grids. It is shown that the phase error of the sixth-order bicompact scheme does not exceed 0.2% in the entire range of dimensionless wave numbers. A numerical example is presented that demonstrates the ability of the bicompact scheme to adequately simulate wave propagation on coarse grids at long times.

Об авторах

A. Chikitkin

Moscow Institute of Physics and Technology

Email: rogov.boris@gmail.com
Россия, Dolgoprudnyi, Moscow oblast, 141700

B. Rogov

Moscow Institute of Physics and Technology; Keldysh Institute of Applied Mathematics

Автор, ответственный за переписку.
Email: rogov.boris@gmail.com
Россия, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 125047

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).