Feynman and quasi-Feynman formulas for evolution equations
- Авторы: Remizov I.D.1,2
-
Учреждения:
- Mechanics and Mathematics Faculty
- Nizhny Novgorod State University
- Выпуск: Том 96, № 2 (2017)
- Страницы: 433-437
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225358
- DOI: https://doi.org/10.1134/S1064562417050052
- ID: 225358
Цитировать
Аннотация
New methods for obtaining representations of solutions of the Cauchy problem for linear evolution equations, i.e., equations of the form ut'(t, x) = Lu(t, x), where the operator L is linear and depends only on the spatial variable x and does not depend on time t, are proposed. A solution of the Cauchy problem, that is, the exponential of the operator tL, is found on the basis of constructions proposed by the author combined with Chernoff’s theorem on strongly continuous operator semigroups.
Об авторах
I. Remizov
Mechanics and Mathematics Faculty; Nizhny Novgorod State University
Автор, ответственный за переписку.
Email: ivremizov@yandex.ru
Россия, Moscow, 119991; Nizhny Novgorod, 630600
Дополнительные файлы
