S-units and periodicity of square root in hyperelliptic fields
- Авторлар: Petrunin M.M.1
-
Мекемелер:
- Scientific Research Institute of System Analysis
- Шығарылым: Том 95, № 3 (2017)
- Беттер: 222-225
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225035
- DOI: https://doi.org/10.1134/S1064562417030097
- ID: 225035
Дәйексөз келтіру
Аннотация
For a polynomial f of odd degree, nontrivial S-units can be effectively related to the continued fraction expansion of elements involving the square root of the polynomial f only in the case where S consists of an infinite valuation and a finite valuation determined by a first-degree polynomial h. In the paper, the proof that the quasi-periodicity of the continued fraction expansion of an element of the form \(\frac{{\sqrt f }}{{{h^s}}}\) implies periodicity is completed. In particular, it is proved that the continued fraction expansion of \(\sqrt f \) for f of any degree is quasi-periodic in k((h)) it and only if it is periodic.
Авторлар туралы
M. Petrunin
Scientific Research Institute of System Analysis
Хат алмасуға жауапты Автор.
Email: petrushkin@yandex.ru
Ресей, Moscow, 117218
Қосымша файлдар
