Liouville nonintegrability of sub-Riemannian problems on free Carnot groups of step 4


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

One of the main approaches to the study of the Carnot–Carathéodory metrics is the Mitchell–Gromov nilpotent approximation theorem, which reduces the consideration of a neighborhood of a regular point to the study of the left-invariant sub-Riemannian problem on the corresponding Carnot group. A detailed analysis of sub-Riemannian extremals is usually based on the explicit integration of the Hamiltonian system of Pontryagin’s maximum principle. In this paper, the Liouville nonintegrability of this system for left-invariant sub-Riemannian problems on free Carnot groups of step 4 and higher is proved.

作者简介

L. Lokutsievskii

Steklov Mathematical Institute; Mechanics and Mathematics Faculty

编辑信件的主要联系方式.
Email: lion.lokut@gmail.com
俄罗斯联邦, Moscow, 119991; Moscow, 119991

Yu. Sachkov

Ailamazyan Program Systems Institute; RUDN University

Email: lion.lokut@gmail.com
俄罗斯联邦, Yaroslavskaya obl., Pereslavskii raion, s. Ves’kovo, 152021; Moscow, 117198

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017