Sub-Riemannian geodesics in SO(3) with application to vessel tracking in spherical images of retina
- Authors: Mashtakov A.P.1, Duits R.2, Sachkov Y.L.1, Bekkers E.2, Beschastnyi I.Y.3
 - 
							Affiliations: 
							
- Program Systems Institute of RAS, Yaroslavl Region
 - Eindhoven University of Technology
 - International School for Advanced Studies
 
 - Issue: Vol 95, No 2 (2017)
 - Pages: 168-171
 - Section: Mathematics
 - URL: https://journals.rcsi.science/1064-5624/article/view/224955
 - DOI: https://doi.org/10.1134/S1064562417020181
 - ID: 224955
 
Cite item
Abstract
In order to detect vessel locations in spherical images of retina we consider the problem of minimizing the functional \(\int\limits_0^l {\mathfrak{C}\left( {\gamma \left( s \right)} \right)\sqrt {{\xi ^2} + k_g^2\left( s \right)} ds}\) for a curve γ on a sphere with fixed boundary points and directions. The total length l is free, s denotes the spherical arclength, and kg denotes the geodesic curvature of γ. Here the smooth external cost C ≥ δ > 0 is obtained from spherical data. We lift this problem to the sub-Riemannian (SR) problem in Lie group SO(3) and propose numerical solution to this problem with consequent comparison to exact solution in the case C = 1. An experiment of vessel tracking in a spherical image of the retina shows a benefit of using SO(3) geodesics.
About the authors
A. P. Mashtakov
Program Systems Institute of RAS, Yaroslavl Region
							Author for correspondence.
							Email: alexey.mashtakov@gmail.com
				                					                																			                												                	Russian Federation, 							Pereslavl-Zalessky, 152021						
Remco Duits
Eindhoven University of Technology
														Email: alexey.mashtakov@gmail.com
				                					                																			                												                	Netherlands, 							Eindhoven						
Yu. L. Sachkov
Program Systems Institute of RAS, Yaroslavl Region
														Email: alexey.mashtakov@gmail.com
				                					                																			                												                	Russian Federation, 							Pereslavl-Zalessky, 152021						
Erik Bekkers
Eindhoven University of Technology
														Email: alexey.mashtakov@gmail.com
				                					                																			                												                	Netherlands, 							Eindhoven						
I. Yu. Beschastnyi
International School for Advanced Studies
														Email: alexey.mashtakov@gmail.com
				                					                																			                												                	Italy, 							Trieste						
Supplementary files
				
			
					
						
						
						
						
				