Sub-Riemannian geodesics in SO(3) with application to vessel tracking in spherical images of retina


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In order to detect vessel locations in spherical images of retina we consider the problem of minimizing the functional \(\int\limits_0^l {\mathfrak{C}\left( {\gamma \left( s \right)} \right)\sqrt {{\xi ^2} + k_g^2\left( s \right)} ds}\) for a curve γ on a sphere with fixed boundary points and directions. The total length l is free, s denotes the spherical arclength, and kg denotes the geodesic curvature of γ. Here the smooth external cost C ≥ δ > 0 is obtained from spherical data. We lift this problem to the sub-Riemannian (SR) problem in Lie group SO(3) and propose numerical solution to this problem with consequent comparison to exact solution in the case C = 1. An experiment of vessel tracking in a spherical image of the retina shows a benefit of using SO(3) geodesics.

Sobre autores

A. Mashtakov

Program Systems Institute of RAS, Yaroslavl Region

Autor responsável pela correspondência
Email: alexey.mashtakov@gmail.com
Rússia, Pereslavl-Zalessky, 152021

Remco Duits

Eindhoven University of Technology

Email: alexey.mashtakov@gmail.com
Países Baixos, Eindhoven

Yu. Sachkov

Program Systems Institute of RAS, Yaroslavl Region

Email: alexey.mashtakov@gmail.com
Rússia, Pereslavl-Zalessky, 152021

Erik Bekkers

Eindhoven University of Technology

Email: alexey.mashtakov@gmail.com
Países Baixos, Eindhoven

I. Beschastnyi

International School for Advanced Studies

Email: alexey.mashtakov@gmail.com
Itália, Trieste

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017