On the chromatic numbers of low-dimensional spaces
- Authors: Cherkashin D.D.1,2,3, Raigorodskii A.M.2,4,5
 - 
							Affiliations: 
							
- St. Petersburg State University
 - Moscow Institute of Physics and Technology (State University)
 - Université de Genève
 - Faculty of Mechanics and Mathematics
 - Institute of Mathematics and Informatics
 
 - Issue: Vol 95, No 1 (2017)
 - Pages: 5-6
 - Section: Mathematics
 - URL: https://journals.rcsi.science/1064-5624/article/view/224684
 - DOI: https://doi.org/10.1134/S106456241701001X
 - ID: 224684
 
Cite item
Abstract
New lower bounds are found for the minimum number of colors needed to color all points of a Euclidean space in such a way that any two points at a distance of 1 have different colors.
About the authors
D. D. Cherkashin
St. Petersburg State University; Moscow Institute of Physics and Technology (State University); Université de Genève
														Email: mraigor@yandex.ru
				                					                																			                												                	Russian Federation, 							St. Petersburg; Dolgoprudnyi, Moscow oblast, 141700; Genève						
A. M. Raigorodskii
Moscow Institute of Physics and Technology (State University); Faculty of Mechanics and Mathematics; Institute of Mathematics and Informatics
							Author for correspondence.
							Email: mraigor@yandex.ru
				                					                																			                												                	Russian Federation, 							Dolgoprudnyi, Moscow oblast, 141700; Moscow, 119992; Buryat Republic, 670000						
Supplementary files
				
			
					
						
						
						
						
				