Riemannian metrics on ℝn and Sobolev-type Inequalities


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Poincaré-type estimates for a logarithmically concave measure μ on a convex set Ω are obtained. For this purpose, Ω is endowed with a Riemannian metric g in which the Riemannian manifold with measure (Ω, g, μ) has nonnegative Bakry–Emery tensor and, as a corollary, satisfies the Brascamp–Lieb inequality. Several natural classes of metrics (such as Hessian and conformal metrics) are considered; each of these metrics gives new weighted Poincare, Hardy, or log-Sobolev type inequalities and other results.

作者简介

A. Kolesnikov

Higher School of Economics (National Research University)

编辑信件的主要联系方式.
Email: sascha77@mail.ru
俄罗斯联邦, Myasnitskaya ul. 20, Moscow, 101000

E. Milman

Israel Institute of Technology (Technion)

Email: sascha77@mail.ru
以色列, Haifa, 3200003

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016