Equivalence of the trigonometric system and its perturbations in Lp(−π,π)
- 作者: Sedletskii A.M.1
 - 
							隶属关系: 
							
- Mechanics and Mathematics Faculty
 
 - 期: 卷 94, 编号 1 (2016)
 - 页面: 464-467
 - 栏目: Mathematics
 - URL: https://journals.rcsi.science/1064-5624/article/view/224164
 - DOI: https://doi.org/10.1134/S1064562416040335
 - ID: 224164
 
如何引用文章
详细
Let B be one of the spaces Lp(−π,π), 1 ≤ p < ∞, p ≠ 2, and C[−π,π]. Sufficient conditions under which the “perturbed” trigonometric system \({e^{i{{\left( {n + {\alpha _n}} \right)}^t}}}\), n ∈ Z, is equivalent in B to the trigonometric system eint, n ∈ Z, are found. Under an additional requirement on (αn), a necessary condition is obtained. One of the results is as follows. If (αn) ∈ ls, where 1/s = 1/p - 1/2, then the equivalence specified above takes place, and the exponent s is exact; the space C corresponds to p = ∞. The proofs are based on the application of Fourier multipliers.
作者简介
A. Sedletskii
Mechanics and Mathematics Faculty
							编辑信件的主要联系方式.
							Email: sedlet@mail.ru
				                					                																			                												                	俄罗斯联邦, 							Moscow, 119991						
补充文件
				
			
						
						
					
						
						
				