Equivalence of the trigonometric system and its perturbations in Lp(−π,π)


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let B be one of the spaces Lp(−π,π), 1 ≤ p < ∞, p ≠ 2, and C[−π,π]. Sufficient conditions under which the “perturbed” trigonometric system \({e^{i{{\left( {n + {\alpha _n}} \right)}^t}}}\), n ∈ Z, is equivalent in B to the trigonometric system eint, n ∈ Z, are found. Under an additional requirement on (αn), a necessary condition is obtained. One of the results is as follows. If (αn) ∈ ls, where 1/s = 1/p - 1/2, then the equivalence specified above takes place, and the exponent s is exact; the space C corresponds to p = ∞. The proofs are based on the application of Fourier multipliers.

作者简介

A. Sedletskii

Mechanics and Mathematics Faculty

编辑信件的主要联系方式.
Email: sedlet@mail.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016