Strictly singular operators in pairs of Lp space
- Authors: Semenov E.M.1, Tradacete P.2, Hernandez F.L.3
 - 
							Affiliations: 
							
- Voronezh State University
 - Universidad Carlos III de Madrid
 - Complutense University of Madrid
 
 - Issue: Vol 94, No 1 (2016)
 - Pages: 450-452
 - Section: Mathematics
 - URL: https://journals.rcsi.science/1064-5624/article/view/224106
 - DOI: https://doi.org/10.1134/S1064562416040281
 - ID: 224106
 
Cite item
Abstract
Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q ⊂ E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from Lp to Lq is found. There exists a strictly singular but not superstrictly singular operator on Lp, provided that p ≠ 2.
About the authors
E. M. Semenov
Voronezh State University
							Author for correspondence.
							Email: nadezhka_ssm@geophys.vsu.ru
				                					                																			                												                	Russian Federation, 							Universitetskaya pl. 1, Voronezh, 394006						
P. Tradacete
Universidad Carlos III de Madrid
														Email: nadezhka_ssm@geophys.vsu.ru
				                					                																			                												                	Spain, 							Madrid						
F. L. Hernandez
Complutense University of Madrid
														Email: nadezhka_ssm@geophys.vsu.ru
				                					                																			                												                	Spain, 							Madrid						
Supplementary files
				
			
					
						
						
						
						
				