Numerical detection and study of singularities in solutions of differential equations


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

New simple and robust methods are proposed for detecting singularities, such as poles, logarithmic poles, and mixed singularities, in systems of ordinary differential equations. The methods produce characteristics of these singularities with an a posteriori asymptotically precise error estimate. They are applicable in the case of an arbitrary parametrization of integral curves, including one in terms of the arc length, which is optimal for stiff and ill-conditioned problems. Following this approach, blowup solutions can be detected for a broad class of important nonlinear partial differential equations, since they are reducible by the method of lines to systems of ordinary differential equations of huge orders. The simplicity and reliability of the approach are superior to those of previously known methods.

Об авторах

A. Belov

Keldysh Institute of Applied Mathematics; Faculty of Physics

Автор, ответственный за переписку.
Email: belov_25.04.1991@mail.ru
Россия, Miusskaya pl. 4, Moscow, 125047; Moscow, 119992

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).