Deficiency numbers of operators generated by infinite Jacobi matrices
- 作者: Braeutigam I.N.1, Mirzoev K.A.2
 - 
							隶属关系: 
							
- Northern (Arctic) Federal University
 - Faculty of Mechanics and Mathematics
 
 - 期: 卷 93, 编号 2 (2016)
 - 页面: 170-174
 - 栏目: Mathematics
 - URL: https://journals.rcsi.science/1064-5624/article/view/223492
 - DOI: https://doi.org/10.1134/S1064562416020137
 - ID: 223492
 
如何引用文章
详细
New conditions for minimality, maximality, and nonmaximality of deficiency numbers of the minimal operator generated by the infinite Jacobi matrix with m × m matrix entries in the Hilbert space of mdimensional vectors are presented. Special attention is given to the case m = 1, i.e., to conditions on the elements of a tridiagonal numerical Jacobi matrix under which the determinate case of the classical power moment problem is realized.
作者简介
I. Braeutigam
Northern (Arctic) Federal University
							编辑信件的主要联系方式.
							Email: irinadolgih@rambler.ru
				                					                																			                												                	俄罗斯联邦, 							nab. Severnoi Dviny 17, Arkhangelsk, 163002						
K. Mirzoev
Faculty of Mechanics and Mathematics
														Email: irinadolgih@rambler.ru
				                					                																			                												                	俄罗斯联邦, 							Moscow, 119991						
补充文件
				
			
						
						
					
						
						
				