Boundary criterion for integral operators
- 作者: Kal’menov T.S.1, Otelbaev M.1
 - 
							隶属关系: 
							
- Institute of Mathematics and Mathematical Modeling
 
 - 期: 卷 93, 编号 1 (2016)
 - 页面: 58-61
 - 栏目: Mathematics
 - URL: https://journals.rcsi.science/1064-5624/article/view/223372
 - DOI: https://doi.org/10.1134/S1064562416010208
 - ID: 223372
 
如何引用文章
详细
Integral operators of the form \(L_K^{ - 1} f(x) = \int\limits_\Omega {K(x,t)f(t)dt}\) for the case of a finite domain Ω ⊂ Rn with smooth boundary ∂Ω are considered. Conditions on the real kernel K(x, t) of an integral operator under which this operator satisfies a well-defined boundary condition for the corresponding differential equation are found. The application of the results is demonstrated on the example of a Sturm–Liouville equation, for which the derivation of the general form of well-posed boundary value problems is presented.
作者简介
T. Kal’menov
Institute of Mathematics and Mathematical Modeling
							编辑信件的主要联系方式.
							Email: kalmenov.t@mail.ru
				                					                																			                												                	哈萨克斯坦, 							ul. Shevchenko 28, Almaty, 050010						
M. Otelbaev
Institute of Mathematics and Mathematical Modeling
														Email: kalmenov.t@mail.ru
				                					                																			                												                	哈萨克斯坦, 							ul. Shevchenko 28, Almaty, 050010						
补充文件
				
			
						
						
					
						
						
				