Quasi-Optimal Braking of Rotations of a Body with a Moving Mass Coupled to It through a Quadratic Friction Damper in a Resisting Medium


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

This paper addresses the problem of the time-optimal braking of rotations of a dynamically symmetric rigid body under a small control moment in the ellipsoidal range with close unequal values of the ellipsoid’s semiaxes. This problem is considered a problem of quasi-optimal control. The body is assumed to have a moving mass connected to it through elastic coupling with quadratic dissipation. In addition, the body is exposed to a small braking moment of the linear resistance of the medium. The problem of synthesizing the quasi-optimal braking of the rotations of a dynamically symmetric body in a resisting medium is investigated analytically and numerically. An approximate solution is found by the phase-averaging of the processional motion. The qualitative properties of quasi-optimal motion are analyzed and the corresponding graphs are presented.

Об авторах

L. Akulenko

Ishlinsky Institute for Problems in Mechanics

Автор, ответственный за переписку.
Email: kumak@ipmnet.ru
Россия, Moscow

T. Kozachenko

Odessa State Academy of Civil Engineering and Architecture

Email: kumak@ipmnet.ru
Украина, Odessa

D. Leshchenko

Odessa State Academy of Civil Engineering and Architecture

Email: kumak@ipmnet.ru
Украина, Odessa

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).