Model of Representation and Acquisition of New Knowledge by an Autonomous Intelligent Robot Based on the Logic of Conditionally Dependent Predicates


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The model for the representation of declarative and procedural knowledge of an autonomous intelligent robot is developed without reference to a specific subject area. The logic of conditionally dependent predicates underlies the construction of this model. Procedures that allow an autonomous intelligent robot to automatically generate new knowledge needed for a readout in the process of planning goal-seeking behavior in undetermined conditions of a problem-solving environment are proposed. The method of proving the satisfiability of the formulas under the logic of conditionally dependent predicates with linear complexity is based on the attribution of object variables in them as objects of the problem-solving environment and serves to process knowledge that is used by an autonomous intelligent robot to automatically build plans for goal-seeking behavior under undetermined operating conditions.

Об авторах

V. Melekhin

Dagestan State Technical University; Dagestan State University of National Economy

Автор, ответственный за переписку.
Email: Pashka1602@rambler.ru
Россия, Makhachkala, Republic of Dagestan, 367015; Makhachkala, Republic of Dagestan, 367008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).