The genesis of vertisols with gilgai microtopography: A review


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Different hypotheses about the genesis of gilgai microtopography and corresponding soil complexes with clayey swelling soils are considered in this review. Their diversity is stipulated by specificities of the objects themselves and by the history of studies of the composition, properties, regimes, and landscape conditions of the areas with Vertisols in different countries. Most of the hypotheses about the genesis of Vertisols with the gilgai microtopography suggest that strong swelling–shrinking processes take place in these soils in the course of moistening–drying cycles; the origin of shear stress in the soils, its spatial patterns, and the particular ways of translocation of the soil material are discussed. At the early stage of Vertisol studies, a hypothesis about the leading role of the process of “self-swallowing” of the soils as a result of filling of open cracks with the material from the upper soil horizons was popular. However, numerous facts suggest that the intensity of this process is relatively low, so that it cannot play the major role in the gilgai formation and cyclic changes in the thickness and properties of the soil horizons in Vertisols. Another important mechanism is the uneven moistening and drying of the whole soil volume resulting in the irregular distribution of inner tensions in the soil with the development of shear stress and plastic deformation of the soil mass. The hypotheses suggested in the recent decades are based on the models of soil mechanics. A number of hypotheses consider possible alternation and duration of evolutionary stages of the development of Vertisols with the gilgai microtopography.

About the authors

N. B. Khitrov

Dokuchaev Soil Science Institute

Author for correspondence.
Email: khitrovnb@gmail.com
Russian Federation, per. Pyzhevskii 7, Moscow, 119017


Copyright (c) 2016 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies