Analysis of the Effect of Physico-Mechanical Characteristics of Cumulative Liner Material on Parameters of a High-Speed Element


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we present the results of numerical simulation of explosive formation of a high-speed compact element from copper, steel, and aluminum cumulative liners combining the shape of a hemispherical segment smoothly converting into a cylindrical surface (“hemisphere–cylinder” liners). The problem is solved in a two-dimensional axisymmetric setting considering the limiting parameters of the dynamic stress-strain state causing plastic flow and destruction of the cumulative liner material. The original model of the functioning of cumulative shaped charge, which determines the effect of individual elements of the cumulative liners, including the difference in numerical characteristics of their physicomechanical properties and critical destruction conditions, on the final parameters of the high-speed compact element, was used. The plastic properties of the material and the critical conditions for its destruction were found not to affect the final velocity of the formed high-speed compact element, but they affect its shape, dimensions, and mass.

About the authors

V. I. Kolpakov

Bauman Moscow State Technical University

Email: nikolskayajm@yandex.ru
Russian Federation, Moscow, 105005

S. V. Ladov

Bauman Moscow State Technical University

Email: nikolskayajm@yandex.ru
Russian Federation, Moscow, 105005

Ya. M. Nikolskaya

Bauman Moscow State Technical University

Author for correspondence.
Email: nikolskayajm@yandex.ru
Russian Federation, Moscow, 105005

S. V. Fedorov

Bauman Moscow State Technical University

Email: nikolskayajm@yandex.ru
Russian Federation, Moscow, 105005


Copyright (c) 2018 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies