High-Power X-Ray Line Radiation of the Plasma Produced in a Collision of High-Energy Plasma Flows
- Авторлар: Gavrilov V.V.1, Es’kov A.G.1, Zhitlukhin A.M.1, Kochnev D.M.1, Pikuz S.A.2, Poznyak I.M.1, Ryazantsev S.N.2, Skobelev I.Y.2, Toporkov D.A.1, Umrikhin N.M.1
-
Мекемелер:
- Troitsk Institute for Innovation and Fusion Research
- Joint Institute for High Temperatures
- Шығарылым: Том 44, № 9 (2018)
- Беттер: 820-827
- Бөлім: Plasma Radiation
- URL: https://journals.rcsi.science/1063-780X/article/view/186927
- DOI: https://doi.org/10.1134/S1063780X18090039
- ID: 186927
Дәйексөз келтіру
Аннотация
Results are presented from experimental studies of a pulsed source of soft X-ray (SXR) emission with photon energies in the range of 0.4–1 keV and an output energy of 2–10 kJ. SXR pulses with a duration of 10–15 μs were generated in collisions of two plasma flows propagating toward one another in a longitudinal magnetic field. The plasma flows with velocities of (2–4) × 107 cm/s and energy contents of 70–100 kJ were produced by two electrodynamic coaxial accelerators with pulsed gas injection. Nitrogen and neon, as well as their mixtures with deuterium, were used as working gases. The diagnostic equipment is described, and the experimental results obtained under different operating conditions are discussed. In particular, X-ray spectroscopy was used to study the high-temperature plasma produced in a collision of two plasma flows. The observed intensities of spectral lines are compared with the results of detailed kinetic calculations performed in a steady-state approximation. The calculations of the nitrogen and neon kinetics have shown that the electron temperature of a nitrogen plasma can be most conveniently determined from the intensity ratio of the resonance lines of He- and H-like nitrogen ions, while that of a neon plasma, from the intensity ratio between the resonance line of He-like Ne IX ions and the 3p−2s line of Li-like Ne VIII ions. In the experiments with plasma flows containing nitrogen ions, the electron temperature was found to be ≈120 eV, whereas in the experiments with plasma flows containing neon ions, it was 160–170 eV.
Авторлар туралы
V. Gavrilov
Troitsk Institute for Innovation and Fusion Research
Хат алмасуға жауапты Автор.
Email: vvgavril@triniti.ru
Ресей, Troitsk, Moscow, 108840
A. Es’kov
Troitsk Institute for Innovation and Fusion Research
Email: vvgavril@triniti.ru
Ресей, Troitsk, Moscow, 108840
A. Zhitlukhin
Troitsk Institute for Innovation and Fusion Research
Email: vvgavril@triniti.ru
Ресей, Troitsk, Moscow, 108840
D. Kochnev
Troitsk Institute for Innovation and Fusion Research
Email: vvgavril@triniti.ru
Ресей, Troitsk, Moscow, 108840
S. Pikuz
Joint Institute for High Temperatures
Email: vvgavril@triniti.ru
Ресей, Moscow, 125412
I. Poznyak
Troitsk Institute for Innovation and Fusion Research
Email: vvgavril@triniti.ru
Ресей, Troitsk, Moscow, 108840
S. Ryazantsev
Joint Institute for High Temperatures
Email: vvgavril@triniti.ru
Ресей, Moscow, 125412
I. Skobelev
Joint Institute for High Temperatures
Email: vvgavril@triniti.ru
Ресей, Moscow, 125412
D. Toporkov
Troitsk Institute for Innovation and Fusion Research
Email: vvgavril@triniti.ru
Ресей, Troitsk, Moscow, 108840
N. Umrikhin
Troitsk Institute for Innovation and Fusion Research
Email: vvgavril@triniti.ru
Ресей, Troitsk, Moscow, 108840
Қосымша файлдар
