Aneutronic Fusion in Collision of Oppositely Directed Plasmoids


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Tri-Alpha and Helion energy companies have proposed an approach as the near future fusion reactor. The method used in this kind of reactor for attaining high fusion yield is based on the formation and throwing of two plasmoids toward each other. In this study, the optimized reaction rate for interpenetration of two head on colliding plasmoids is investigated. Calculations are performed by supposing the velocity of plasmoids ions as Maxwellian distribution function. Fusion output-to-input power ratio (Q factor) was computed by evaluation of the velocity-averaged cross sections and also ion−electron and ion−ion Coulomb power loss. A fluid model including a computational code has been used for the precise calculations of fusion power balance. The optimum interpenetration velocity and plasmoids parameters required to reach the ignition are studied for aneutronic fusion fuels, such as p11B and D–3He, as well as D−T and D−D fuels. The results of investigation show that the breakeven is attainable in specific collision velocity and plasma temperature for each fuel. Also, the plasma density has to be around 1020 ions/cm3.

Sobre autores

A. Asle Zaeem

Energy Engineering and Physics Department

Autor responsável pela correspondência
Email: alirezazaeem@gmail.com
Irã, Tehran

H. Ghafoori Fard

Electrical Engineering Department

Email: alirezazaeem@gmail.com
Irã, Tehran

A. Sadighzadeh

Plasma Physics and Nuclear Fusion Research School

Email: alirezazaeem@gmail.com
Irã, Tehran

M. Habibi

Energy Engineering and Physics Department

Email: alirezazaeem@gmail.com
Irã, Tehran


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies