Plasma chemistry of the sealed-off slab CO laser active medium pumped by radio-frequency discharge with liquid-nitrogen-cooled electrodes


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The long-term time behavior of the output power of a sealed-off cryogenic slab CO laser pumped by a repetitively pulsed RF discharge and operating on the overtone (λ = 2.6–3.5 μm) vibrational−rotational transitions of the CO molecule was studied experimentally. It is shown that adding of an anomalously large amount of oxygen (up to 50% with respect to the CO concentration) to the initial gas mixture CO : He = 1 : 10 leads to a manyfold (by several tens of times) increase in the duration of the laser operating cycle (until lasing failure due to the degradation of the active medium). In this case, the laser life-time without replacement of the active medium reaches 105–106 pulses. Using various diagnostics (including luminescence spectroscopy and IR and UV absorption spectroscopy), regularities in the time-behavior of the concentrations of the main component of the active medium (CO molecules) and the products of plasmachemical reactions (O3, CO2) generated in the discharge gap during the laser operating cycle are revealed. Time correlation between the characteristics of the active medium and the laser output power are analyzed. A phenomenological approach to describing the entirety of plasmachemical, purely chemical, gas-dynamic, and diffusion processes determining the behavior of the laser output characteristics throughout the laser operating cycle is offered.

Sobre autores

A. Ionin

Lebedev Physical Institute

Autor responsável pela correspondência
Email: aion@sci.lebedev.ru
Rússia, Moscow, 119991

A. Kozlov

Lebedev Physical Institute

Email: aion@sci.lebedev.ru
Rússia, Moscow, 119991

L. Seleznev

Lebedev Physical Institute

Email: aion@sci.lebedev.ru
Rússia, Moscow, 119991

D. Sinitsyn

Lebedev Physical Institute

Email: aion@sci.lebedev.ru
Rússia, Moscow, 119991


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies