Ecton processes in the generation of pulsed runaway electron beams in a gas discharge


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10–11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.

About the authors

G. A. Mesyats

Lebedev Physical Institute

Author for correspondence.
Email: mesyats@sci.lebedev.ru
Russian Federation, Moscow, 119991


Copyright (c) 2017 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies