Physical Parameters of a Reactor-Stellarator with Small Ripples of the Helical Magnetic Field


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper describes the calculation data on the physical parameters of a reactor-stellarator, where the nonuniformities of the helical field are smaller than the toroidal magnetic field nonuniformities: εh < εt. Unlike the previous studies, where the ion-component transport coefficients had the collision frequency dependence proportional to ν1/2, this being equivalent to the εh > εt case, in the present calculations, these coefficients were assumed to be in proportion to the first power of the collision frequency, Di ∝ ν for νeff < 2ωE, and to Di ∝ ν−1 for the inverse inequality. Here, ωE is the rotation frequency of plasma in the radial electric field. As before, the plasma electrons corresponded to the mode of De ∝ ν−1. As initial parameters for numerical calculations, a reactor with R = 8 m, rp = 2 m, and B0 = 5 Т was taken. A numerical code was used to solve the set of equations that describes the plasma space−time behavior in the reactor-stellarator under the conditions of equal diffusion fluxes. The start of reactor operation in the mode of thermonuclear burning was provided by heating sources with a power of several tens of megawatts. Steady-state operating conditions of a self-sustained thermonuclear reaction were attained by maintaining the plasma density through DT fuel pellet injection into the plasma.

About the authors

V. A. Rudakov

Institute of Plasma Physics

Author for correspondence.
Email: v.rudakov@aol.com
Ukraine, Kharkiv, 61108


Copyright (c) 2018 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies