Measurements of the parameters of a condensed deuterated Z-pinch on the angara-5-1 facility
- Authors: Aleksandrov V.V.1, Bryzgunov V.A.2, Grabovski E.V.1, Gritsuk A.N.1, Volobuev I.V.3, Kazakov E.D.2, Kalinin Y.G.2, Korolev V.D.2, Laukhin Y.I.1, Medovshchikov S.F.1, Mitrofanov K.N.1, Oleinik G.M.1, Pimenov V.G.4, Smirnova E.A.2, Ustroev G.I.2, Frolov I.N.1
-
Affiliations:
- Troitsk Institute for Innovation and Fusion Research
- National Research Centre Kurchatov Institute
- Lebedev Physical Institute
- Zelinsky Institute of Organic Chemistry
- Issue: Vol 42, No 4 (2016)
- Pages: 355-361
- Section: Plasma Dynamics
- URL: https://journals.rcsi.science/1063-780X/article/view/185679
- DOI: https://doi.org/10.1134/S1063780X16040012
- ID: 185679
Cite item
Abstract
Results are presented from measurements of the parameters of high-temperature plasma in the Z-pinch neck formed when a current of up to 3.5 MA flows through a low-density polymer load. To enhance the effect of energy concentration, a deuterated microporous polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1–1.3 mm was placed in the central part of the load. During the discharge current pulse, short-lived local hot plasma spots with typical dimensions of about 200–300 μm formed in the neck region. Their formation was accompanied by the generation of soft X-ray pulses with photon energies of E > 0.8 keV and durations of 3–4 ns. The plasma electron temperature in the vicinity of the hot spot was measured from the vacuum UV emission spectra of the iron diagnostic admixture and was found to be about 200–400 eV. The appearance of hot plasma spots was also accompanied by neutron emission with the maximum yield of 3 × 1010 neutrons/shot. The neutron energy spectra were studied by means of the time-of-flight method and were found to be anisotropic with respect to the direction of the discharge current.
About the authors
V. V. Aleksandrov
Troitsk Institute for Innovation and Fusion Research
Email: korolev_vd@nrcki.ru
Russian Federation, Troitsk, Moscow, 142190
V. A. Bryzgunov
National Research Centre Kurchatov Institute
Email: korolev_vd@nrcki.ru
Russian Federation, pl. Akademika Kurchatova 1, Moscow, 123182
E. V. Grabovski
Troitsk Institute for Innovation and Fusion Research
Email: korolev_vd@nrcki.ru
Russian Federation, Troitsk, Moscow, 142190
A. N. Gritsuk
Troitsk Institute for Innovation and Fusion Research
Email: korolev_vd@nrcki.ru
Russian Federation, Troitsk, Moscow, 142190
I. V. Volobuev
Lebedev Physical Institute
Email: korolev_vd@nrcki.ru
Russian Federation, Leninskii pr. 53, Moscow, 119991
E. D. Kazakov
National Research Centre Kurchatov Institute
Email: korolev_vd@nrcki.ru
Russian Federation, pl. Akademika Kurchatova 1, Moscow, 123182
Yu. G. Kalinin
National Research Centre Kurchatov Institute
Email: korolev_vd@nrcki.ru
Russian Federation, pl. Akademika Kurchatova 1, Moscow, 123182
V. D. Korolev
National Research Centre Kurchatov Institute
Author for correspondence.
Email: korolev_vd@nrcki.ru
Russian Federation, pl. Akademika Kurchatova 1, Moscow, 123182
Ya. I. Laukhin
Troitsk Institute for Innovation and Fusion Research
Email: korolev_vd@nrcki.ru
Russian Federation, Troitsk, Moscow, 142190
S. F. Medovshchikov
Troitsk Institute for Innovation and Fusion Research
Email: korolev_vd@nrcki.ru
Russian Federation, Troitsk, Moscow, 142190
K. N. Mitrofanov
Troitsk Institute for Innovation and Fusion Research
Email: korolev_vd@nrcki.ru
Russian Federation, Troitsk, Moscow, 142190
G. M. Oleinik
Troitsk Institute for Innovation and Fusion Research
Email: korolev_vd@nrcki.ru
Russian Federation, Troitsk, Moscow, 142190
V. G. Pimenov
Zelinsky Institute of Organic Chemistry
Email: korolev_vd@nrcki.ru
Russian Federation, Leninskii pr. 47, Moscow, 119991
E. A. Smirnova
National Research Centre Kurchatov Institute
Email: korolev_vd@nrcki.ru
Russian Federation, pl. Akademika Kurchatova 1, Moscow, 123182
G. I. Ustroev
National Research Centre Kurchatov Institute
Email: korolev_vd@nrcki.ru
Russian Federation, pl. Akademika Kurchatova 1, Moscow, 123182
I. N. Frolov
Troitsk Institute for Innovation and Fusion Research
Email: korolev_vd@nrcki.ru
Russian Federation, Troitsk, Moscow, 142190
Supplementary files
