On the Toroidal Surfaces of Revolution with Constant Mean Curvatures
- 作者: Ilgisonis V.I.1,2,3, Skovoroda A.A.1, Sorokina E.A.1,2,3
-
隶属关系:
- National Research Center Kurchatov Institute
- Peoples’ Friendship University of Russia (RUDN University)
- National Research Nuclear University MEPhI
- 期: 卷 80, 编号 7 (2017)
- 页面: 1307-1312
- 栏目: Article
- URL: https://journals.rcsi.science/1063-7788/article/view/192999
- DOI: https://doi.org/10.1134/S1063778817070067
- ID: 192999
如何引用文章
详细
It is shown that the surface with a constant mean curvature encloses the extremal volume among all toroidal surfaces of given area. The exact solution for the corresponding variational problem is derived, and its parametric analysis is performed in the limits of high and small mean curvatures. An absence of smooth torus with constant mean curvature is proved, and the extremal surface is demonstrated to have at least one edge located on the outer side of the torus.
作者简介
V. Ilgisonis
National Research Center Kurchatov Institute; Peoples’ Friendship University of Russia (RUDN University); National Research Nuclear University MEPhI
Email: Skovoroda_AA@nrcki.ru
俄罗斯联邦, Moscow; Moscow; Moscow
A. Skovoroda
National Research Center Kurchatov Institute
编辑信件的主要联系方式.
Email: Skovoroda_AA@nrcki.ru
俄罗斯联邦, Moscow
E. Sorokina
National Research Center Kurchatov Institute; Peoples’ Friendship University of Russia (RUDN University); National Research Nuclear University MEPhI
Email: Skovoroda_AA@nrcki.ru
俄罗斯联邦, Moscow; Moscow; Moscow
补充文件
