A superintegrable discrete harmonic oscillator based on bivariate Charlier polynomials
- Авторы: Genest V.X.1, Miki H.2, Vinet L.3,1, Yu G.1
-
Учреждения:
- Department of Mathematics
- Department of Electronics, Faculty of Science and Engineering
- Centre de Recherches Mathématiques
- Выпуск: Том 80, № 4 (2017)
- Страницы: 794-800
- Раздел: Elementary Particles and Fields
- URL: https://journals.rcsi.science/1063-7788/article/view/192375
- DOI: https://doi.org/10.1134/S106377881704010X
- ID: 192375
Цитировать
Аннотация
A simple discrete model of the two-dimensional isotropic harmonic oscillator is presented. It is superintegrable with su(2) as its symmetry algebra. It is constructed with the help of the algebraic properties of the bivariate Charlier polynomials. This adds to the other discrete superintegrable models of the oscillator based on Krawtchouk and Meixner orthogonal polynomials in several variables.
Об авторах
Vincent Genest
Department of Mathematics
Автор, ответственный за переписку.
Email: vxgenest@mit.edu
США, Cambridge
Hiroshi Miki
Department of Electronics, Faculty of Science and Engineering
Email: vxgenest@mit.edu
Япония, Kyotanabe City
Luc Vinet
Centre de Recherches Mathématiques; Department of Mathematics
Email: vxgenest@mit.edu
Канада, Ottawa; Shanghai
Guofu Yu
Department of Mathematics
Email: vxgenest@mit.edu
Китай, Shanghai
Дополнительные файлы
