Localization and the Weyl algebras


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let Wn(ℝ) be the Weyl algebra of index n. It is well known that so(p, q) Lie algebras can be viewed as quadratic polynomial (Lie) algebras in Wn(ℝ) for p + q = n with the Lie algebra multiplication being given by the bracket [a, b] = abba for a, b quadratic polynomials in Wn(ℝ). What does not seem to be so well known is that the converse statement is, in a certain sense, also true, namely, that, by using extension and localization, it is possible, at least in some cases, to construct homomorphisms of Wn(ℝ) onto its image in a localization of U(so(p + 2, q)), the universal enveloping algebra of so(p + 2, q), and m = p + q. Since Weyl algebras are simple, these homomorphisms must either be trivial or isomorphisms onto their images. We illustrate this remark for the so(2, q) case and construct a mappping from Wq(ℝ) onto its image in a localization of U(so(2, q)). We prove that this mapping is a homomorphism when q = 1 or q = 2. Some specific results about representations for the lowest dimensional case of W1(ℝ) and U(so(2, 1)) are given.

Авторлар туралы

Patrick Moylan

Department of Physics

Хат алмасуға жауапты Автор.
Email: pjm11@psu.edu
АҚШ, Abington

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017